
DEVCMS
TECHNICAL MANUAL

M a r s s t e d e n 1 2 0 • 7 5 4 7 T D E n s c h e d e • t e l e p h o n e : 0 5 3 - 4 5 0 0 2 2 5 • w w w. n e d f o r c e . n l

http://www.nedforce.nl
http://www.nedforce.nl

Change Log

D e v C M S - Te c h n i c a l M a n u a l

1

DATE BY DESCRIPTION

2010-06-17 Reinier de Lange Initial version

2010-07-15 Arthur Holstvoogd Updated dependencies, added TOC, added gov. WS intergration

2010-11-04 Arthur Holstvoogd Updated dependencies, added separation of GOV& CORE, many other
updates. Changed CMS name to DevCMS

2010-12-31 Arthur Holstvoogd Add chapter on Layout engine, correct other references, add new CT’s

2011-01-20 Arthur Holstvoogd Update to reflect new views/stylesheetsstructure, update dependencies

Table of contents

Introduction! 4

System Dependencies! 4

Required Gems! 4

Optional Gems! 5

Required Libraries! 5

Architecture! 6

Node Tree Structure! 6

Subsites and subdomains! 6

Authorization! 7

Publication Dates! 7

Node Versioning & Approval! 7

Content Node Configuration! 8

Administrator Interface! 10

Engines! 11

Layout and templating system! 12

Guides! 15

Setting up a new website! 15

Adding a new content type! 15

Overriding core functionality! 17

Setting up a search engine! 17

Notes & Remarks! 19

Content archives! 19

Settings! 19

D e v C M S - Te c h n i c a l M a n u a l

2

Localization! 19

Opus product catalogue integration! 19

Integration with governmental webservices! 19

Caching! 19

Should I override, create an engine or update DevCMS Core?! 20

Future Improvements & Considerations! 20

Node versioning, document management! 20

Approvals! 20

Modularity! 20

Content accessibility management! 20

Rails3 Upgrade! 20

Memcached! 21

Testing! 21

Appendices! 22

Background Tasks! 22

Database Diagram! 23

Approvable Content Types! 24

D e v C M S - Te c h n i c a l M a n u a l

3

Introduction
This document is meant to give developers an understanding on how the DevCMS works. This includes installation in-
formation, an explanation of the architecture and guides for setting up new applications or extending existing function-
ality. Finally, this document describes possible future improvements and considerations of the core system.

System Dependencies
The DevCMS is a Rails 2 application that uses several gems and plugins. The plugins are packaged with the application
and are installed using piston to allow updates from remote repositories.

Required Gems

NAME VERSION NOTES

shuber-sortable 1.0.6 Defines the order of nodes and content representations

ancestry 1.2.0 Enables the node tree structure

dsl_accessor 0.3.3

feed-normalizer 1.5.2

ferret 0.11.6 Windows users might need to install version 0.11.5 using the following com-
mand: gem install ferret -v '= 0.11.5'

httpclient 2.1.5.2 Dependency of soap4r.

libxml-ruby 1.1.3

mocha 0.9.8 Only used in the test environment

pg 0.9.0 DevCMS uses database dependent queries for speed, therefore only post-
gresql servers are supported.

rails 2.3.5 Rails and all its dependencies.

rmagick 2.12.2 Uses librmagick-ruby, see Required Libraries. Windows might need to install
version 2.12 instead.

rsolr 0.12.1 Used for searching using Apache SOLR (Luminis).

rubyntlm 0.1.1 Support for NTLM authentication, needed for sharepoint integration.

soap4r 1.5.8 For integration with SOAP services, DEPRECATED

tidy 1.1.2

dynamic_attributes 1.1.3

settler 1.2 Used for keeping project specific setting.

faster-csv Used to generate permit csv’s

acts-as-taggable-on 2.2.6 Tags are used as title altenatives

haml 3.0

D e v C M S - Te c h n i c a l M a n u a l

4

Optional Gems

NAME VERSION NOTES

faker 0.3.1 Used when generating test data using rake db:populate.

piston 2.0.8 Enables checking out plugins from remote repositories.

rcov 0.9.8 Used when measuring code coverage

Required Libraries

NAME NOTES

imagemagick Used by librmagick. This library might need libjpeg, libpng3, ... to be able to success-
fully transform images

librmagick-ruby Used by the rmagick gem to transform images.

Installation:

• Linux: sudo apt-get install librmagick-ruby
• Windows:

• Download the RMagick package for Win32:
h t t p : / / r u b y f o r g e . o r g / f r s / ? g r o u p _ i d = 1 2 & r e l e a s e _ i d = 2 0 6 9 2 .

• Unzip the file to a temporary location
• Follow the installation instructions in the README:

• Install ImageMagick by using the setup that can be found in the zip file.
• Be sure that you tick Update executable search path in the Additional

Tasks part.

• Make sure RubyGems is up to date: gem update –system
• Install the RMagick gem by running this command from the temporary di-

rectory: gem install rmagick -local
• Install the Microsoft Visual C++ Redistributable Package

• It may be necessary to restart ruby services / running applications

postgresql82 The postgresql server. Should be version 8.1+.

postgresql82-dev The postgresql development libraries.

libxml2

D e v C M S - Te c h n i c a l M a n u a l

5

http://rubyforge.org/frs/?group_id=12&release_id=20692
http://rubyforge.org/frs/?group_id=12&release_id=20692

Architecture
This section describes the global architecture of the system. First, the core principle behind the application, the tree node
structure, is explained. The other subsections deal with the several aspects of content management that are available to
the users of the system.

Node Tree Structure

The system has been built around the idea that every content type should be
seen as a node of a tree structure. This can be justified by the fact that every web-
site can be represented as a tree, as becomes clear when viewing a website’s
sitemap (see the example on the left).

Every content type in the system is associated with a node object. The node ob-
ject contains information that should be available to every content type, of which
the most important ones are:

• Node parent and position;
• Content and content-box style;
• Publication date;

• Visibility on site and in the site menu;
• URL alias;
• Approval status.

On the other hand, every content type consists of attributes specifically for that particular type. Consequently, every con-
tent type has its own routes, controllers and views. Most (but not all) models are a content type, as can be seen in the
database diagram found in the appendices. In the diagram, all content types have a double line. The choice for not hav-
ing made everything a content type was usually based on the fact that it wasn’t logical for a particular model to be man-
aged from the sitemap tree (e.g. newsviewer items, poll options) or that the amount of records that would be displayed
in the tree would become too big (e.g. comments, forum threads/posts). Moreover, usually these models don’t need a
custom URL alias, as they are of lesser importance than the content nodes that are using them.

The tree structure has been implemented using polymorphic relations. Every node record belongs to exactly one content
record. A future improvement would be to use Single Table Inheritance (STI) instead. This was not used initially, because
the Rails STI implementation was very unstable when the core system was implemented.

Subsites and subdomains
It is possible to create ‘subsites’ using the Site content type. Site is a subclass of Section and can be handled as such with a
few exceptions: It requires a domain to be specified, this should be a FQDN, and it can only be nested under the root
node. It is not necessary that the set domain is a subdomain of the root sites domain.

In the front-end most content queries are scoped on the current_site, thus scoping a.o. the menu’s, related content, ab-
breviations and synonyms, the site map, breadcrumbs, search etc.

Note that for routing purposes, the lookup is scoped, but the urls are not.

D e v C M S - Te c h n i c a l M a n u a l

6

Authorization
A user in the system can have no roles at all, or is either an administrator, a final editor or an editor for a given subtree. This
means that a user can have the editor role for one section of a site, but a final editor role for another. This has been imple-
mented using the RoleAssignment model. If an administrator assigns the editor role to a user for a particular node in the
system, that user will become an editor for that node and all of its descendant nodes.

Every role will grant a user to perform the following actions:

• Administrator:
Full privileges: Creation, updates and destruction of all nodes, ability to assign user roles to nodes, approve content,
change the global frontpage, manage users, manage permissions, add and delete synonyms/abbreviations, manage
programs, manage weblog & forum comments.

• Final Editor
Creation, updates and destruction of all nodes in the subtree, approve subtree nodes created/edited by editors, man-
age weblog & forum comments.

• Editor
Creating and editing nodes in the subtree, which will be marked as unapproved and will therefore not be shown on the
public site directly. It needs to be approved first by a final editor or an administrator.

• Reader
A special role that allows no access to the backend, but is used to grant users access to ‘hidden’ sections in the front-
end.

Publication Dates
Publication dates consist of a publication start and end date, which are defined on nodes. Every record of every content
type will only be shown on the public site between those two dates. When no end date is set, it is assumed the content
should be published indefinitely after the start date has passed. Remember to properly set the publication start date of an
object when testing functionality.

Node Versioning & Approval
Nodes in the tree can be in several states, which is stored in the node’s status attribute:

• unapproved: The node has been created or changed by an editor and is waiting for approval.
• approved: The node has been approved, created or updated by an administrator or final editor. A new version of the

content node is recorded.

• rejected: An unapproved node has explicitly been rejected by an administrator or final editor. The editor responsible
for the change will be notified when a node enters this state.

• drafted: The node (unapproved or approved) is drafted, meaning a user has not finished changing this node and
should therefore not be shown on the website. The node will not be listed for approval.

D e v C M S - Te c h n i c a l M a n u a l

7

When a content node is created by an administrator or final editor, it is automatically considered to be approved and
therefore a new version of this node is recorded. There is a separate table to store these versions (the versions table), to
which a serialized (yaml-ized) version of the content node is stored. The main idea is that the versions table always con-
tains the last approved version of a content node. Conclusively, when an editor makes a change, the table of the content
type will contain the new, unapproved version and the website should show the yaml-ized, approved version until the
unapproved version has been approved by an administrator or final editor.

While the current method works, it has shown that it also introduces some disadvantages. First of all, it makes the query
for finding a whole subtree of nodes that should be visible on the public site and its main menu very complex. For every
node, it should check whether it is approved and it should get the last approved version from the versions table for un-
approved nodes if an old, approved version exists. This is one of the main functions of the Node#find_accessible
method.

For an approval system, it would be better to turn this around: unapproved versions of a record should be serialized and
the old version should not be overwritten. This would greatly simplify the finding mechanism of approved content.
However, there is another problem that should be taken into account. A big drawback of this mechanism is that it will
only serialize the attributes of the content node, not the node itself. For example, a change in the publication date of the
node by an editor will not be recorded: the node will become unapproved, but the old publication date will be lost.

Content Node Configuration
Each content type specifies a content type configuration and passes it to the acts_as_content_node method. Each configu-
ration options has been listed in the table below:

NAME DEFAULT DESCRIPTION

enabled TRUE Whether users should be able to create this content
node

allowed_child_content_types [] A list of content nodes that should be allowed as
children. For example, a news archive can only con-
tain news items.

allowed_roles_for_update [admin, final_editor, editor] Only allow node updates for users having a par-
ticular role on the current node (set explicitly or
inherited)

Drafted

Approved

Unapproved

Rejected

create/update (editor)

create/update (final editor / admin)

reject

approve wait_for_approval

wait_for_approval

approve

wait_for_approval
draft

draft

approve

D e v C M S - Te c h n i c a l M a n u a l

8

NAME DEFAULT DESCRIPTION

allowed_roles_for_create [admin, final_editor, editor] Only allow node creation for users having a par-
ticular role on the current node (set explicitly or
inherited)

allowed_roles_for_destroy [admin, final_editor, editor] Only allow node destruction for users having a
particular role on the current node (set explicitly or
inherited)

available_content_representa-
tions

[] Array of available content representations, specify
available representations as a string matching the
names used in the layout configurations

has_related_content FALSE Some content types have related content, for these
content types a custom representation is available
to show this content in a content box

show_in_menu TRUE Whether this node should be enlisted in the main
menu.

copyable TRUE Defines if a node can be copied, meaning it can be
represented by a ContentCopy node. A content copy
acts as a proxy to the copied node.

has_own_feed FALSE Defines if a RSS atom feed of this node is available.

children_can_be_sorted TRUE Defines if children of this node can be ordered by
dragging.

tree_loader_name nodes Defines the controller name that loads the subtree of
a node. Some content types show their children
node in a way that is different from the default be-
havior defined in Admin::NodesController#index.
For example, when a user lists the children of a
NewsArchive, it will group all children by publica-
tion year and month.

has_edit_items
has_sync
has_importer

FALSE Enable a menu item with the name (i.e. without
has_) in the backend, that loads a action with that
same name on the content type’s controller. Can be
reused for anything fitting.

By default this is used by ProductCatalogues for
sync options and NewsViewers for managing the
related items.

The default configuration can be overwritten in the root application by editing the model class dev_cms.rb. The options
specified in the hash returned by the method DevCMS#content_types_configuration are merged with the configura-
tion passed to acts_as_content_node on demand. Example:

def content_types_configuration

 { 'ContactForm' => { :enabled => false } }

end

D e v C M S - Te c h n i c a l M a n u a l

9

Administrator Interface
The administrator has completely been built using the ExtJS (v2.2.1) javascript framework. Although programming using
this framework is a little bit harder than normal, it provides our users with a clean, dynamic and easy to understand
interface.

Custom ExtJS JavaScript Classes

Some DevCMS specific extJS javascript classes have been created, namespaced with ‘Ext.dvtr’. Most of these classes are
for browsing through the admin sitemap. A small description of every custom class:

• Nodes:

• Ext.dvtr.AsyncContentTreeNode

Represents a node in the sitemap. An AsyncContentTreeNode can have several attributes
that define how the node is displayed and which actions a user can perform on the node.
These attributes are loaded using JSON. All configuration attributes are defined in the Node
model class by the method Node#to_tree_node_for.

• Ext.dvtr.AsyncVirtualTreeNode

A virtual tree node is a container for content nodes instead of a representation of a real
node. It is used to group big amounts of child content nodes together to prevent the
tree from growing too big and to ensure that tree loading times stay small. There are
several examples for which this technique has been applied. First of all, there are
many content nodes that represent an archive of items that have a publication date,
like for example news archives. When a news archive node is expanded, its attached

news items are split up in virtual nodes that represent a year or a month of a year. The content nodes of a virtual
node will only be loaded when the virtual node is expanded.

• Context Menus:

• Ext.dvtr.TreeNodeContextMenu

This class represents the context menu of a node. It receives the node attributes by
Ext.dvtr.AsyncContentTree Node, so that it knows which actions should be available
to the current user.

• Ext.dvtr.VirtualTreeNodeContextMenu

This class represents the context menu of a virtual node. Virtual nodes may have some
actions as well, such as deletion of every content node contained by the associated virtual
node.

• Ext.dvtr.MultipleTreeNodeContextMenu

The sitemap also allows selection of multiple nodes at once. When this happens, the mul-
tiple tree node context menu is loaded. It provides general actions that are available to all
nodes for the current user.

D e v C M S - Te c h n i c a l M a n u a l

10

• Drag & Drop Classes

• Ext.dvtr.NodeDropField

A node drop field is an input field in which a user can drop a node from the tree.
On drop, the node ID will be appended to the form. This class is used for creating
internal links or to set the start page of a section.

• Ext.dvtr.Sorter

A Sorter is a panel in which nodes can be
dropped. On drop, an Ext.dvtr.Sortlet will
be created inside the Sorter. If a Sorter contains
multiple Sortlets, the order of the Sortlets can
be changed by dragging and dropping them in

the right position. Sorters are used for newslet-
ter editions and content carrousels, which create an object that combines multiple nodes.

• Ext.dvtr.Sortlet

A Sortlet is a child element of a Sorter. It is a panel that can be expanded to show its contents. It can be dragged to
a different position within the Sorter panel.

• Ext.dvtr.RemovableTextField

A removable text field is an input field that can be added and removed from a
form. It is used to set the several answers for a poll question.

• Ext.dvtr.TreeLoader

The tree loader is responsible for loading nodes in the admin sitemap. It will load the root node and its children on
load and it will add children to a node when a user expands that node.

• Ext.dvtr.Panel

The Ext.dvtr.Panel does exactly the same as a standard panel, but it adds a ‘beforeload’ event to which listeners
can be attached.

• Ext.dvtr.ContentNodeFormPanel

The custom content node form panel does exactly the same as a standard form panel, except that it contains a func-
tion for inserting validation errors into the form.

Views, forms and partials

Since most of the forms and views follow the same CRU pattern for all content types, generic view templates are used
that load content-type specific views. The generic templates are located in app/views/admin/shared, the content spe-
cific types are in the controller based view directories. I.e. in app/views/admin/content_type_controller_name. Although
the controllers could probably be generalized to some extend as well, this had not yet been implemented.

Engines
DevCMS is using Rails Engines (http://rails-engines.org/) to integrate with Rails applications. This means core functional-
ity can be overridden by placing classes in your application that have the same name as the target class found in
DevCMS.

DevCMS consists of two engines: devcms-core and devcms-gov, the former containing all core and basic functionality,
the latter containing all functionality geared toward use by municipalities.

It is encouraged to further extend the number of submodules and create smaller blocks of functionality.

D e v C M S - Te c h n i c a l M a n u a l

11

http://rails-engines.org
http://rails-engines.org

Layout and templating system
DevCMS has a build in layout and templating system to allow the easy creation and management of multiple layouts
and variants to be used in the CMS. These layout reside in app/layouts and override any the default views provided by
the CMS engines.

In the following paragraphs the different aspects of views, layouts and templates are explained.

Content representations

Each layout and variants thereof provide the CMS user with different targets to place existing content in. Content placed
in these targets is shown in the front-end using a representation specific to that target. Which targets exists, how they are
laid out and what representation it requires are all specified in the layout configuration file.

Aside from content representations directly linked to existing content, dynamic representations, or custom representa-
tions, can be implemented. By default this functionality is used to create menu’s and related content boxes. Custom rep-
resentations can either render a partial or call a rendering helper that should output the wanted markup.

Layouts and variants

To provide extensible and flexible templating, DevCMS supports layouts and variants thereof. In this scope a layout pro-
vides the general makeup and styling of the website and a default layout of the content within. A variant provides a way
to create alternative layouts of the content, but should not significantly change the styling of the website. I.e. the layout
ensure the general look and feel of the website, variants determine the positioning of content target areas.

Aside from using layout variants to vary the layout of pages, it is also possible to extend layouts in another layout. This
allows you to reuse most of the layout and its variants, while changing, for instance, the general styling of the website.
This prevents you from having to copy paste entire variants when only the header and footer of a layout differ.

Extending cannot be used recursively.

Layouts reside in the app/layouts directory and consist of the following files and directories

FILE / DIRECTORY DESCRIPTION

config.yml Configuration of the layout and its variants, explained further in the next
paragraph

settings.html.haml Form for any layout specific settings that should be specified when this lay-
out is used.

targets.html.haml Simple representation of the layout, containing the content targets. Used in
the CMS backend to render the content drop targets.

views Any partials of overrides specific for this layout

variant 1, variant 2, variant n Any variants of this layout, can also contain a targets.html.haml and view
directory specific to this layout.

D e v C M S - Te c h n i c a l M a n u a l

12

Layout configuration

The layout configuration file (config.yml) contains specifications of the layout and it’s variants. All available options are
described below.

OPTION DESCRIPTION

name A descriptive name for the layout

extends A reference to another layout which this layout is based upon. Referenced by
directory name. (Not path!)

custom_representations Configuration of the available custom representations in this layout. Each
custom representation available should be specified as a key with some con-
figuration nested. Per representation the following options are available:

custom_representation key identifying the custom representation.

name A descriptive name for the custom representation.

content_partial Content partial to render, should be available for the current content type. If
no content_partial is given, a helper method is assumed to exist using the
custom representations key prefixed with render_.

representation The type of representation the content should be rendered in. This represen-
tation will only be allowed in targets that support the type specified.

targets_defaults Target defaults, to prevent duplication between variants. The following op-
tions can be specified:

target key identifying target.

max_items Maximum allowed content representations to be placed in this target. Empty
or 0 => no maximum.

representation Allowed representations, only content that supports this representation is
allowed to be placed in this target.

main_content Specifies wether this is the primary content area of this layout(variant), corre-
sponds to the default yield in the actual layout. Defaults to false.

height/width height and width used in the backend representation of the target.

variant Key identifying the variant. Specifying a default is required.

name A descriptive name for the variant.

 inheritable Specifies wether this variant is inherited by children nodes, or wether they
should fallback to the default variant. Defaults to true.

 target Targets need to be specified as a key, configuration defaults may be overrid-
den here. See target_defaults for options.

D e v C M S - Te c h n i c a l M a n u a l

13

Views load order

Views are loaded from different locations in a fixed order, this allows you to override certain layout elements as needed.
The table below outlines these locations and which views are, or should be, placed there. The table is in order of prece-
dence, higher item override lower items.

LOCATION CONTENTS

app/layouts/layout/variant/views Overrides specific to the current layout variant

app/layouts/extended_layout/variant/views Overrides specific to the extended layout variant

app/layouts/layout/views Overrides specific to the current layout

app/layouts/extended_layout/views Overrides specific to the extended layout

app/views Generic layout of application specific functionality

vendor/plugins/engine/app/views Generic layout of CMS functionality

Styling

The default templates and partials are all styled using SASS, the default styles are included in the app/stylesheets direc-
tories of the engines. An initializer ‘loads’ these stylesheets into the application, it is recommend these stylesheet are then
imported in an application specific application sass file that also imports all application specific styles and templating
styles needed.

D e v C M S - Te c h n i c a l M a n u a l

14

Guides

Setting up a new website
1. Install all system dependencies
2. Generate a new rails application using the DevCMS application template:
! rails application -m devcms-template.rb

3. Setup your database by modifying your database.yml
4. Create, migrate and seed the database: rake db:create db:migrate db:seed
5. Run the web server and browse to the root page. You should be up and running! The seed data sets you up with a

root node and an admin user (admin:admin).
6. For development, there are rake tasks available to populate the database with random data:

• db:populate:users

! Populate the database with 1000 random users that don’t have any role
• db:populate:privileged_users

! Creates an administrator, a final editor and an editor with the following login information:!!

LOGIN ROLE PASSWORD

webmaster administrator admin

eindredacteur final_editor final_editor

redacteur editor editor

• db:populate:nodes

! Creates a small node structure of several content types for use during development.
• db:populate:all

! Invokes all of the above tasks.

Adding a new content type
1. First, implement the model:

1. Create or generate a new ActiveRecord model: script/generate model <model>
2. Add validations and logic as usual
3. Declare the model as being a content node by adding the line: acts_as_content_node
4. If the new content node should be approvable (i.e. should be set to unapproved when created/updated by edi-

tors), add the following line: needs_editor_approval
5. Add node configuration options to DevCMS.rb
6. Some content node methods can be overridden if desired:

METHOD DEFAULT DESCRIPTION

content_title Model title attribute,
or ModelName#id

Should return the title or a substitute title for the record

tree_text content_title The text to show in the admin sitemap.

D e v C M S - Te c h n i c a l M a n u a l

15

METHOD DEFAULT DESCRIPTION

tree_icon_class Underscored model class
name + ‘_icon’

The CSS class that this node in the admin sitemap should
get. The css class should set an icon as background-image
property:

.page_icon {

 background-image: url('/images/icons/page.png');

}

content_tokens nil Should return a string with tokens (separated by spaces)
that will be used for indexing.

icon_filename Underscored model class
name + ‘.png’

Returns the filename of the icon that will be used to rep-
resent the content node on the public website. This icon
should be stored in /public/images/icons/.

self.owms_type

(class method)
I18n.t('owms.web_page') Should return the OWMS type for the model. Every

OWMS type has been added to the I18n YAML files,
scoped under ‘owms’.

2. Create an admin controller for the model.
1. Place the controller in the /apps/controllers/admin directory. Prepend the Admin namespace to the class name and

make it a subclass of Admin::AdminController.
Example: class Admin::PagesController < Admin::AdminController

2. Implement all resource controller methods (new, create, edit, update), except the index and destroy meth-
ods. These last two will be handled by the Admin::NodesController.

3. Restrict access to all actions by calling the require_role method with an array of roles that are allowed to
manage the resource: require_role ['admin', 'final_editor', 'editor'].

4. Prepend the following filter for the new and create methods. This will ensure that the authorization is based on
the permissions that the current user has on the parent of the new node.
prepend_before_filter :find_parent_node, :only => [:new, :create]

5. Only when the new content node is approvable:
1. Use the method Model#save_for_user(user) instead of the normal save method to save the model. This

will ensure that the node state will be properly set.
2. Besides the normal resource controller actions, add a method named previous, which should behave the

same as the show method, but uses the old version of the model instead. It will be used to show a diff be-
tween the new and old version of the node to an administrator or final editor
Example:

! ! def previous

 @page = @page.previous_version

 show

 end

6. Create views for all resource actions. Please take a look at views of other types for examples. It is important for
vies of approvable types that there is a show partial (_show.html.erb) with a local variable called record (con-
taining the content node), because this partial will be used by the approval screen.

7. Create a new route for this controller:
Normal content types:

 map.namespace(:admin) do |admin|

 admin.resources :pages, :except => [:index, :destroy]

 end

! Approvable content types:
! map.namespace(:admin) do |admin|
 admin.resources :pages, :except => [:index, :destroy], :member => { :previous => :get }

D e v C M S - Te c h n i c a l M a n u a l

16

 end

!
3. Create the controller for the public part of the website

1. Place the controller in the /apps/controllers/directory and make it a subclass of ApplicationController.
Example: class PagesController < ApplicationController

2. Only implement the show action in this case. The ApplicationController will automatically load the re-
quested node in the @node variable, so you can easily access the last approved version of the content node by
calling @node.approved_content (will work for normal and approvable content types).

3. Create a show view
4. Add a new route for your controller. Example: map.resources :pages, :only => :show.

Overriding core functionality
Note that the behavior of Engines is different for models and controllers. Functionality of an overridden controller will
be merged with the target plugin controller, while an overridden model will completely be overridden. So, if you want to
override a model class, you will need to include the original model or override it completely. When you want to extend
functionality, you could choose to use Engines again and move your code to an Engines plugin instead of adding it to the
root application.

While you can add new migrations to the root application you cannot override the migrations copied from the plugin,
these are updated on migrate.

Setting up a search engine
DevCMS uses the Strategy software pattern to switch between search engines. Currently, there is support for Ferret.

The Searcher class is responsible for deciding what to do with a search query. Two settings can be used to modify its
behavior:

SETTING DEFAULT DESCRIPTION

DEFAULT_SEARCH_ENGINE :ferret The search engine to use when no engine name is explicitly
being passed.

ENABLED_SEARCH_ENGINES [:ferret, :other] Defines which engines are allowed to be used.

The Searcher expects a search query and an options hash, to which you can pass options that are specific for every en-
gine. It should return a PagingEnumerator object (for pagination support) containing Searcher::SEARCH_RESULT_
STRUCT structs, which consists of the following attributes:

• :title - The title of a found resource
• :tstamp - The creation/modification date of the resource

• :content - The content or an excerpt of the content
• :url - The unique url to the found resource
• :node - Optionally, the DevCMS node of the resource.

• :score - Optionally, the result (relevance) score

Example: Searching using Ferret

• Call the Searcher:
• Searcher(:ferret).search(‘my_query’) / Searcher.new(:ferret)).search(‘my_query’)

• Searcher.new.search(‘my_query’) # Uses the default search engine

• Searcher(:ferret).search(‘my_query’, :for => current_user, :page => 2, :page_size => 25)

• Example response:

D e v C M S - Te c h n i c a l M a n u a l

17

• Searcher(:ferret).search(‘my_query’).to_a
=> [#<struct Searcher::SEARCH_RESULT_STRUCT title="Home", tstamp=Thu Jun 17 14:56:59 +0200

2010, content="Rerum consequatur amet dicta aliquam sit quia.", url=nil, node=#<Node id: 2>,

score=nil>]

Creating a new search engine

1. First, create a new class in /app/models/search that implements the following method:

def self.search(query, page, page_size, user, top_node, options)

 # Perform the search

 # Create an array of Searcher::SEARCH_RESULT_STRUCT objects

 # Encapsulate and return the results in a paging enumerator:

 PagingEnumerator.new(page_size, numFound, false, page, 1){ search_results }

end

The Searcher class will ensure that all arguments passed to the search method will be set. It should be noted that user
might be nil and that top_node will always be the root node of the website if a top node is not explicitly set.

2. Expand the Searcher class
• Add a symbol for your new engine to the Searcher::ENGINES constant
• Expand the initializer to load your new class when the engine symbol is passed. For example, considering you

would like to add a Sphinx engine, you would have to add ‘when :sphinx then Search::SphinxSearch’ to the
case statement.

3. Change the ENABLED_SEARCH_ENGINES and optionally the DEFAULT_SEARCH_ENGINE constant to be able to use your
new engine.

4. For your engine, you might need to extend the Node class to receive updates for the search index. When nodes are
created or updated, the Node class will look for the following methods and execute those if present:

METHOD DESCRIPTION

self.without_reindex(&block)

(class method)
The block passed should be executed without updating the search
index.

without_reindex(&block) The block passed should be executed without updating the search
index. The block applies specifically to the node instance.

update_index Should trigger the engine to update the index for the current node
instance. Will be called after a node update.

add_to_index Called after a node has been created to add the node to the search
index.

disable_reindex_until_saved Should defer a reindex call until the node is saved.

! Please take a look at the Search::Modules::Ferret::FerretNodeExtension module found in /app/models/!
! search/modules/ferret class for an example.

D e v C M S - Te c h n i c a l M a n u a l

18

Notes & Remarks
This section contains several important notes on functionality and conventions used in DevCMS.

Content archives
A common case is the usage of an ‘archive’ as an encompassing concept for a set of content of a certain type, e.g. the
NewsArchive containing NewsItems. The relation between the two is supported both in the model, using the
has_children/has_parent marcos, and in the controllers using the acts_as_archive marco.

More information can be found in the documentation of these methods in the documentation of ActsAsContentNode and
ActsAsArchive.

Settings
DevCMS provides functionality to store settings using Settler. Defaults and available settings can be configured through
settler.yml in /config. Editable options can be changed in the backend.

Localization
DevCMS has used localized strings since the start. Due to the absence of Rails I18n, the initial version used the simple_lo-
calization plugin, which is similar to Rails I18n. After the inclusion of Rails I18n, the code has been altered to use that
functionality instead.

JavaScripts have been localized in i18n(_admin).js on a per-project basis. Usage is similar to the usage of Rails I18n.

Opus product catalogue integration
Product catalogues are currently only capable of importing products from the Opus product catalogue. Once setup
products for both the municipality and the SamenwerkendeCatalogie can be updated with a cron job.

To setup a OpusPlusImporter has to be created from the console and initialized with the customer ID, the supplier ID
and the product catalogue to sync to.

Integration with governmental webservices
There are currently two integrations with the governmental webservices of Overheid.nl available. One for pushing an-
nouncements (Bekendmakingen) to Overheid.nl and one for pulling legislation (Regelgeving) from Overheid.nl.

Announcements

Announcements are basically changes in a permits status, however they are stored as a new Permit in the database. New
permits are pushed to the Overheid.nl webservice once a week with a cronjob (Permit.publish).

Legislation

Legislation is pulled from Overheid.nl with a daily cronjob and stored in the LegislationArchive.

Caching
Caching has been done using the built in Rails caching mechanisms (ActionController::Caching). By default,
DevCMS will use the file_store as its cache store. Caches are expired by using sweepers. Cached fragments include:
• Main menu
• Feeds

• Sitemap
• Selections on products

D e v C M S - Te c h n i c a l M a n u a l

19

Should I override, create an engine or update DevCMS Core?
The choice for one of the three options depends on the functionality that is implemented. When certain functionality will
only be used in one application, it should be implemented in the core application. Functionality that may be used in
other projects (but not all) should be implemented as an engine. Finally, functionality (and of course bug fixes) that will
be useful for all DevCMS implementations should be added to the core.

Future Improvements & Considerations

Node versioning, document management
In the current system, versioning is used to show the difference between an approved and an unapproved node. It
would be nice to have multiple versions of nodes as well. Moreover, these versions should be able to have different sta-
tuses in order to create a document workflow, as is common in Document Management Systems (DMS’s). This would
also enable collaborative creation of website content.

The best way to support document management would be to have nodes that have a common parent node and can be in
several states. However, this would need to apply to the node as well as its content node. Therefore, the first step to-
wards this goal would be to switch to Single Table Inheritance (STI) and getting rid of the one-to-one association between
nodes and content nodes.

Approvals
DevCMS uses versioning for approvals, meaning that a version of a content node will be versioned when it is saved. This
also happens when an editor saves a content node. The consequence is that the query for retrieving approved nodes be-
comes much more complex, as the previous version of a content node must be loaded when the current version is unap-
proved. A good optimization of the system is to turn this mechanism around: when an editor saves a content node, it
shouldn’t update the current node, but it should serialize the unapproved content instead. This way it is known that the
current content node is always an approved version, thus eliminating the need to retrieve a specific version.

Modularity
The DevCMS Core was originally a normal Rails application instead of an engine. Although it is modular in the sense
that it has been built using the MVC pattern, there are quite a lot models that could be extracted to a separate engine as
they are not common for a general purpose CMS.

This might provide some improvement, but possibly also drawbacks, in updating and maintaining versions of the CMS.

Content accessibility management
 One of the main performance hits is caused by the complex nature of access rights and publication date inheritance. By
removing these inheritance properties the complexity of finding accessible content can be reduced significantly. This
should not only improve performance and complexity (and thus maintainability), but also make it possible to do more
caching, which would improve response times and scalability.

Rails3 Upgrade
Several changes need to be made to make DevCMS Rails 3 compatible. However, most notably the new routing capabili-
ties and the Rails XSS plugin would probably make the code a lot cleaner. Tasks involve:

• Reimplement node routing

• Remove h() helper calls and make strings html_safe where needed (rails_xss)

D e v C M S - Te c h n i c a l M a n u a l

20

• Rewrite find calls to Arel queries

• Rewrite named scopes to Arel scopes

• Revise / update Rails 2 plugins and gems

• Rewrite ActionMailer classes

• Change the way the database is seeded

Most notable improvement would be the ability to gemify the engines an increase maintainability.

Memcached
The use of a different caching mechanism like memcached should be considered. The performance gain of switching to a
mechanism different form file_store is unknown, but a big advantage of memcached is that it can automatically expire
cached fragments, eliminating the need for cache sweepers.

Testing

• DevCMS has been extensively tested using unit tests and functional tests. The use of new technologies for testing
functionality, like behavior driven development (BDD) solutions as Cucumber or RSpec should be considered.

• To speed up testing, it would be a good idea to use factories instead of fixtures. The current test suite heavily relies
on fixtures, which is one of the main reasons that running this test suite takes a while.

D e v C M S - Te c h n i c a l M a n u a l

21

Appendices

Background Tasks
For all of these tasks, it is assumed that the current directory is the location of the root application, e.g. /home/deploy/
production/current

All tasks are managed using a schedule.rb in the config directory.

TASK FRE-
QUENCY

DESCRIPTION

vendor/plugins/DevCMS_core/script/sharepoint_updater
(calls script/runner 'SharePointList.import_all')

Every 5
minutes

Imports SharePoint lists.

script/runner
'FeedWorker.new.update_feeds'

Every 10
minutes

Updates RSS Feeds.

script/runner
'Node.reduce_hit_count'

Weekly Reduces all node hit counters by a
given factor (default 0.9).

script/runner
'Permit.publish!'

Hourly Publishes approved permits of
which the publication date has
passed to overheid.nl.

script/runner
'NewsletterEditionMailerWorker.new.send_newsletter_editions'

Daily Delivers new newsletter editions to
subscribed users.

script/runner
'LegislationArchive.all.each { |la| la.import_legislations }'

Daily Imports changed CVDR legisla-
tions.

script/runner
'Node.find(:all).each { |n| n.update_index }'

Daily Updates the search index of all
nodes.

script/runner
'OpusPlusImporter.find(:all).each { |opi| opi.update_all }'

Daily Updates all OpusPlus products and
product categories.

rake db:remove_unverified_users Daily Removes all users that haven’t
verified their account in a week.

D e v C M S - Te c h n i c a l M a n u a l

22

Database Diagram

AgendaItem

AgendaItemCategory

Attachment

Calendar

Event

Carrousel

CarrouselItem

Category

CombinedCalendar

ContactBox

ContactForm

ContactFormField

ContentCopy

DbFile

ExternalLink

Feed

Forum

ForumPost

ForumThread

ForumTopic

HtmlPage

Image

Interest

InternalLink

Legislation

LegislationArchive

Link

Meeting

MeetingCategory

NewsArchive

NewsItem

NewsViewer

NewsViewerItem

NewsletterArchive

NewsletterEdition
(1/2)

NewsletterEditionItem

NewsletterEditionQueue

Node

NodeCategory

OpusPlusImporter

Page

Permit

PermitActivity

PermitAddress

PermitArchive

PermitCoordinate

PermitParcel

PermitViewer

PollPollOption

PollQuestion

Product ProductCatalogue

ProductCategoriesProduct

ProductCategory

ProductSynonym

ProductTheme

SearchPage

Section

ContentRepresentation

Template

TopHitsPage

User
(1/3)

UserCategory

Weblog

WeblogArchive

WeblogPost

::Attachment

thumbnails

children

copies

content_representations

links

activities

addresses

coordinates
parcels

ContactFormMailer

FeedWorker

NewsletterEditionMailerWorkerNewsletterSubscription

SharePointList

UserMailer

User
(3/3)

NewsletterEdition
(2/2)

User
(2/3)

RoleAssignment

Comment

CaledarItem
CombinedMeeting

D e v C M S - Te c h n i c a l M a n u a l

23

Approvable Content Types

AgendaItem

Attachment

CalendarItem

ContentCopyExternalLink

Image

InternalLink

Link

Meeting

NewsItem

NewsletterEdition Page

Permit

Product

Section

Version

D e v C M S - Te c h n i c a l M a n u a l

24

